Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Biol Sci ; 290(1996): 20230530, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37040807

ABSTRACT

The visual ecology of early mammals remains poorly resolved. Studies of ancestral photopigments suggest an ancient transition from nocturnal to more crepuscular conditions. By contrast, the phenotypic shifts following the split of monotremes and therians-which lost their SWS1 and SWS2 opsins, respectively-are less clear. To address this, we obtained new phenotypic data on the photopigments of extant and ancestral monotremes. We then generated functional data for another vertebrate group that shares the same photopigment repertoire as monotremes: the crocodilians. By characterizing resurrected ancient pigments, we show that the ancestral monotreme underwent a dramatic acceleration in its rhodopsin retinal release rate. Moreover, this change was likely mediated by three residue replacements, two of which also arose on the ancestral branch of crocodilians, which exhibit similarly accelerated retinal release. Despite this parallelism in retinal release, we detected minimal to moderate changes in the spectral tuning of cone visual pigments in these groups. Our results imply that ancestral forms of monotremes and crocodilians independently underwent niche expansion to encompass quickly changing light conditions. This scenario-which accords with reported crepuscular activity in extant monotremes-may help account for their loss of the ultraviolet-sensitive SWS1 pigment but retention of the blue-sensitive SWS2.


Subject(s)
Alligators and Crocodiles , Opsins , Animals , Opsins/genetics , Rhodopsin , Phylogeny , Biological Evolution , Mammals
2.
Integr Zool ; 17(5): 741-751, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33881210

ABSTRACT

Acquiring clear acoustic signals is critical for the analysis of animal vocalizations. Bioacoustics studies commonly face the problem of overlapping signals, which can impede the structural identification of vocal units, but there is currently no satisfactory solution. This study presents a bi-directional long short-term memory network to separate overlapping echolocation-communication calls of 6 different bat species and reconstruct waveforms. The separation quality was evaluated using 7 temporal-spectrum parameters. All the echolocation pulses and syllables of communication calls in the overlapping signals were separated and parameter comparisons showed no significant difference and negligible deviation between the extracted and original calls. Clustering analysis was conducted with separated echolocation calls from each bat species to provide an example of practical application of the separated and reconstructed calls. The result of clustering analysis showed high corrected rand index (82.79%), suggesting the reconstructed waveforms could be reliably used for species classification. These results demonstrate a convenient and automated approach for separating overlapping calls. The study extends the application of deep neural networks to separate overlapping animal sounds.


Subject(s)
Chiroptera , Echolocation , Acoustics , Animals , Memory, Short-Term , Vocalization, Animal
3.
Mol Ecol ; 28(11): 2944-2954, 2019 06.
Article in English | MEDLINE | ID: mdl-31063664

ABSTRACT

Niche expansion and shifts are involved in the response and adaptation to environmental changes. However, it is unclear how niche breadth evolves and changes toward higher-quality resources. Myotis pilosus is both an insectivore and a piscivore. We examined the dietary composition and seasonality in M. pilosus and the closely related Myotis fimbriatus using next-generation DNA sequencing. We tested whether resource variation or resource partitioning help explain the dietary expansion from insects to fish in M. pilosus. While diet composition and diversity varied significantly between summer and autumn, the proportion of fish-eating individuals did not significantly change between seasons in M. pilosus. Dietary overlap between M. pilosus and M. fimbriatus during the same seasons was much higher than within individual species across seasons. We recorded a larger body size, hind foot length, and body mass in M. pilosus than in M. fimbriatus and other insectivorous trawling bats from China. Similar morphological differences were found between worldwide fishing bats and nonfishing trawling bats. Our results suggest that variation in insect availability or interspecific competition may not play important roles in the dietary expansion from insects to fish in M. pilosus. Myotis pilosus has morphological advantages that may help it use fish as a diet component. The morphological advantage promoting dietary niche evolution toward higher quality resources may be more important than variation in the original resource and the effects of interspecific competition.


Subject(s)
Chiroptera/anatomy & histology , Diet , Ecosystem , Predatory Behavior , Animals , Feces , Fishes , Seasons
4.
Integr Zool ; 14(6): 576-588, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30811841

ABSTRACT

Many studies based on acute short-term noise exposure have demonstrated that animals can adjust their vocalizations in response to ambient noise. However, the effects of chronic noise over a relatively long time scale of multiple days remain largely unclear. Bats rely mainly on acoustic signals for perception of environmental and social communication. Nearly all previous studies on noise-induced vocal adjustments have focused on echolocation pulse sounds. Relatively little is known regarding the effects of noise on social communication calls. Here, we examined the dynamic changes in the temporal parameters of echolocation and communication vocalizations of Vespertilio sinensis when exposed to traffic noise over multiple days. We found that the bats started to modify their echolocation vocalizations on the fourth day of noise exposure, with an increase of 42-91% in the total number of pulse sequences per day. Under noisy conditions, the number of pulses within a pulse sequence decreased by an average of 17.2%, resulting in a significantly slower number of pulses/sequence (P < 0.001). However, there was little change in the duration of a pulse sequence. These parameters were not significantly adjusted in most communication vocalizations under the noise condition (all P > 0.05), except that the duration decreased and the number of syllables/sequences increased in 1 type of communicative vocalization (P < 0.05). This study suggests that bats routinely adjust temporal parameters of echolocation but rarely of communication vocalizations in response to noise condition.


Subject(s)
Chiroptera/physiology , Echolocation/physiology , Motor Vehicles , Noise , Vocalization, Animal/physiology , Animals , Time Factors
5.
Biochem Biophys Res Commun ; 474(2): 271-276, 2016 05 27.
Article in English | MEDLINE | ID: mdl-27086112

ABSTRACT

Histone methylation is an epigenetic modification mechanism that regulates gene expression in eukaryotic cells. Jumonji C domain-containing demethylases are involved in removal of methyl groups at lysine or arginine residues. The JmjC domain-only member, JMJ30/JMJD5 of Arabidopsis, is a component of the plant circadian clock. Although some plant circadian clock genes undergo alternative splicing in response to external cues, there is no evidence that JMJ30/JMJD5 is regulated by alternative splicing. In this study, the expression of an Arabidopsis JMJ30/JMJD5 ortholog in Medicago truncatula, MtJMJC5, in response to circadian clock and abiotic stresses were characterized. The results showed that MtJMJC5 oscillates with a circadian rhythm, and undergoes cold specifically induced alternative splicing. The cold-induced alternative splicing could be reversed after ambient temperature returning to the normal. Sequencing results revealed four alternative splicing RNA isoforms including a full-length authentic protein encoding variant, and three premature termination condon-containing variants due to alternative 3' splice sites at the first and second intron. Under cold treatment, the variants that share a common 3' alternative splicing site at the second intron were intensively up-regulated while the authentic protein encoding variant and the premature termination condon-containing variant only undergoing a 3' alternative splicing at the first intron were down regulated. Although all the premature termination condon-harboring alternative splicing variants were sensitive to nonsense-mediated decay, the premature termination codon-harboring alternative splicing variants sharing the 3' alternative splicing site at the second intron showed less sensitivity than the one only containing the 3' alternative slicing site at the first intron under cold treatment. These results suggest that the cold-dependent alternative splicing of MtJMJC5 is likely a species or genus-specific mechanism of gene expression regulation on RNA levels, and might play a role in epigenetic regulation of the link between the circadian clock and ambient temperature fluctuation in Medicago.


Subject(s)
Alternative Splicing/genetics , Circadian Clocks/genetics , Cold-Shock Response/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Medicago truncatula/physiology , Adaptation, Physiological/genetics , Cold Temperature , Gene Expression Regulation, Plant/genetics , Protein Domains/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...